TU Berlin

Fachgebiet Datenbanksysteme und InformationsmanagementPublikationen

Logo FG DIMA-new  65px


zur Navigation


Efficient SIMD Vectorization for Hashing in OpenCL
Zitatschlüssel BehrensRTBM18
Autor Tobias Behrens Viktor Rosenfeld Jonas Traub Sebastian Breß Volker Markl
Seiten 489-492
Jahr 2018
Journal 21th International Conference on Extending Database Technology (EDBT 2018). 2018
Zusammenfassung Hashing is at the core of many efficient database operators such as hash-based joins and aggregations. Vectorization is a technique that uses Single Instruction Multiple Data (SIMD) instructions to process multiple data elements at once. Applying vectorization to hash tables results in promising speedups for build and probe operations. However, vectorization typically requires intrinsics – low-level APIs in which functions map to processorspecific SIMD instructions. Intrinsics are specific to a processor architecture and result in complex and difficult to maintain code. OpenCL is a parallel programming framework which provides a higher abstraction level than intrinsics and is portable to different processors. Thus, OpenCL avoids processor dependencies, which results in improved code maintainability. In this paper, we add efficient, vectorized hashing primitives to OpenCL. Our results show that OpenCL-based vectorization is competitive to intrinsics on CPUs but not on Xeon Phi coprocessors.
Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe