direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

HyMAC: A Hybrid Matrix Computation System
Zitatschlüssel ChenXSMQZ210
Autor Zihao Chen, Zhizhen Xu, Chen Xu, Juan Soto, Volker Markl, Weining Qian, Aoying Zhou
Seiten 2699 - 2702
Jahr 2021
Journal Proc. VLDB Endow.
Jahrgang 14
Nummer 12
Zusammenfassung Distributed matrix computation is common in large-scale data processing and machine learning applications. Iterative-convergent algorithms involving matrix computation share a common property: parameters converge non-uniformly. This property can be exploited to avoid redundant computation via incremental evaluation. Unfortunately, existing systems that support distributed matrix computation, like SystemML, do not employ incremental evaluation. Moreover, incremental evaluation does not always out-perform classical matrix computation, which we refer to as a full evaluation. To leverage the benefit of increments, we propose a new system called HyMAC, which performs hybrid plans to balance the trade-off between full and incremental evaluation at each iteration. In this demonstration, attendees will have an opportunity to experience the effect that full, incremental, and hybrid plans have on iterative algorithms.
Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe