direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

Scotch: Generating FPGA-Accelerators for Sketching at Line Rate
Zitatschlüssel KieferPBM21
Autor Martin Kiefer, Ilias Poulakis, Sebastian Breß, Volker Markl
Seiten 281-293
Jahr 2020
Journal Proc. VLDB Endow.
Jahrgang 14
Nummer 3
Notiz accepted
Zusammenfassung Sketching algorithms are a powerful tool for single-pass data summarization. Their numerous applications include approximate query processing, machine learning, and large-scale network monitoring. In the presence of high-bandwidth interconnects or in-memory data, the throughput of summary maintenance over input data becomes the bottleneck. While FPGAs have shown admirable throughput and energy-efficiency for data processing tasks, developing FPGA accelerators requires a sophisticated hardware design and expensive manual tuning by an expert. In this paper, we propose Scotch, a novel system for accelerating sketch maintenance using the custom FPGA hardware. Scotch provides a domain-specific language for the user-friendly, high-level definition of a broad class of sketching algorithms. A code generator performs the heavy-lifting of hardware description, while an auto-tuning algorithm tunes the summary size. Our evaluation shows that FPGA accelerators generated by Scotch outperform CPU- and GPU-based sketching by up to two orders of magnitude in terms of throughput and up to one order of magnitude in terms of energy efficiency.
Link zur Publikation [1] Download Bibtex Eintrag [2]

[4]
------ Links: ------

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008