direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

NuPS: A Parameter Server for Machine Learning with Non-Uniform Parameter Access
Zitatschlüssel Renz-WielandGKM22
Autor Alexander Renz-Wieland, Rainer Gemulla, Zoi Kaoudi, Volker Markl
Jahr 2022
Journal SIGMOD
Notiz to appear
Zusammenfassung Parameter servers (PSs) facilitate the implementation of distributed training for large machine learning tasks. In this paper, we argue that existing PSs are inefficient for tasks that exhibit non-uniform parameter access; their performance may even fall behind that of single node baselines. We identify two major sources of such non-uniform access: skew and sampling. Existing PSs are ill-suited for managing skew because they uniformly apply the same parameter management technique to all parameters. They are inefficient for sampling because the PS is oblivious to the associated randomized accesses and cannot exploit locality. To overcome these performance limitations, we introduce NuPS, a novel PS architecture that (i) integrates multiple management techniques and employs a suitable technique for each parameter and (ii) supports sampling directly via suitable sampling primitives and sampling schemes that allow for a controlled quality–efficiency trade-off. In our experimental study, NuPS outperformed existing PSs by up to one order of magnitude and provided up to linear scalability across multiple machine learning tasks.
Link zur Publikation [1] Download Bibtex Eintrag [2]

[4]
------ Links: ------

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe

Copyright TU Berlin 2008