TU Berlin

Fachgebiet Datenbanksysteme und InformationsmanagementPublikationen

Logo FG DIMA-new  65px

Inhalt

zur Navigation

Publikationen

Agora: Bringing Together Datasets, Algorithms, Models and More in a Unified Ecosystem [Vision]
Zitatschlüssel TraubKQM21
Autor Traub, Jonas and Kaoudi, Zoi and Quiané-Ruiz, Jorge-Arnulfo and Markl, Volker
Jahr 2021
Journal SIGMOD Record
Zusammenfassung Data science and artificial intelligence are driven by a plethora of diverse data-related assets, including datasets, data streams, algorithms, processing software, compute resources, and domain knowledge. As providing all these assets requires a huge investment, data science and artificial intelligence technologies are currently dominated by a small number of providers who can afford these investments. This leads to lock-in effects and hinders features that require a flexible exchange of assets among users. In this paper, we introduce Agora, our vision towards a unified ecosystem that brings together data, algorithms, models, and computational resources and provides them to a broad audience. Agora (i) treats assets as first-class citizens and leverages a fine-grained exchange of assets, (ii) allows for combining assets to novel applications, and (iii) flexibly executes such applications on available resources. As a result, it enables easy creation and composition of data science pipelines as well as their scalable execution. In contrast to existing data management systems, Agora operates in a heavily decentralized and dynamic environment: Data, algorithms, and even compute resources are dynamically created, modified, and removed by different stakeholders. Agora presents novel research directions for the data management community as a whole: It requires to combine our traditional expertise in scalable data processing and management with infrastructure provisioning as well as economic and application aspects of data, algorithms, and infrastructure.
Link zur Originalpublikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe