direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

Heatflip: Temporal-Spatial Sampling for Progressive Heat Maps on Social Media Data
Zitatschlüssel StoehrMMBKCL2018
Autor Niklas Stoehr, Johannes Meyer, Volker Markl, Qiushi Bai, Taewoo Kim, De-Yu Chen, Chen Li
Seiten 3723-3732
Jahr 2018
Journal BigData 2018
Zusammenfassung Keyword-based heat maps are a natural way to explore and analyze the spatial properties of social media data. Dealing with large datasets, there may be many different keywords, making offline pre-computations very hard. Interactive frameworks that exploit database sampling can address this challenge. We present a novel middleware technique called Heatflip, which issues diametrically opposed samples into the temporal and spatial dimensions of the data stored in an external database. Spatial samples provide insights into the temporal distribution and vice versa. The progressive exploration approach benefits from adaptive indexing and combines the retrieval and visualization of the data in a middleware layer. Without any a priori knowledge of the underlying data, the middleware can generate accurate heat maps in 85% shorter processing times than conventional systems. In this paper, we discuss the analytical background of Heatflip, showcase its scalability, and validate its performance when visualizing large amounts of social media data.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe