direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

Semantification of Identifiers in Mathematics for Better Math Information Retrieval
Zitatschlüssel SchubotzGLCMGYM2016
Autor Schubotz, Moritz; Grigorev, Alexey; Leich, Marcus; Cohl, Howard S.; Meuschke, Norman; Gipp, Bela; Youssef, Abdou S.; Markl, Volker
Seiten 135-144
Jahr 2016
Journal SIGIR '16 : Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval
Jahrgang 2016
Zusammenfassung Mathematical formulae are essential in science, but face challenges of ambiguity, due to the use of a small number of identifiers to represent an immense number of concepts. Corresponding to word sense disambiguation in Natural Language Processing, we disambiguate mathematical identifiers. By regarding formulae and natural text as one monolithic information source, we are able to extract the semantics of identifiers in a process we term Mathematical Language Processing (MLP). As scientific communities tend to establish standard (identifier) notations, we use the document domain to infer the actual meaning of an identifier. Therefore, we adapt the software development concept of namespaces to mathematical notation. Thus, we learn namespace definitions by clustering the MLP results and mapping those clusters to subject classification schemata. In addition, this gives fundamental insights into the usage of mathematical notations in science, technology, engineering and mathematics. Our gold standard based evaluation shows that MLP extracts relevant identifier-definitions. Moreover, we discover that identifier namespaces improve the performance of automated identifier-definition extraction, and elevate it to a level that cannot be achieved within the document context alone.
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe