TU Berlin

Database Systems and Information Management GroupPublications

Logo FG DIMA-new  65px

Page Content

to Navigation


ML-based Cross-Platform Query Optimization
Citation key KaoudiQCPTC20
Author Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, Bertty Contreras-Rojas, Rodrigo Pardo-Meza, Anis Troudi, Sanjay Chawla
Year 2020
Journal ICDE
Note A recording of the conference presentations is available here:

Presentation slides are available here: https://www.redaktion.tu-berlin.de/fileadmin/fg131/Conferences/Presentations/Kaoudi_ICDE-2020.pdf
Abstract Cost-based optimization is widely known to suffer from a major weakness: administrators spend a significant amount of time to tune the associated cost models. This problem only gets exacerbated in cross-platform settings as there are many more parameters that need to be tuned. In the era of machine learning (ML), the first step to remedy this problem is to replace the cost model of the optimizer with an ML model. However, such a solution brings in two major challenges. First, the optimizer has to transform a query plan to a vector million times during plan enumeration incurring a very high overhead. Second, a lot of training data is required to effectively train the ML model. We overcome these challenges in Robopt, a novel vector-based optimizer we have built for Rheem, a cross-platform system. Robopt not only uses an ML model to prune the search space but also bases the entire plan enumeration on a set of algebraic operations that operate on vectors, which are a natural fit to the ML model. This leads to both speed-up and scale-up of the enumeration process by exploiting modern CPUs via vectorization. We also accompany Robopt with a scalable training data generator for building its ML model. Our evaluation shows that (i) the vector-based approach is more efficient and scalable than simply using an ML model and (ii) Robopt matches and, in some cases, improves Rheem’s cost-based optimizer in choosing good plans without requiring any tuning effort.
Link to publication Link to original publication Download Bibtex entry


Quick Access

Schnellnavigation zur Seite über Nummerneingabe