direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content


JEDI: Joint Entity and Relation Detection using Type Inference
Citation key KirschnikHM16
Author Johannes Kirschnick; Holmer Hemsen; Volker Markl
Year 2016
Journal In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Annual Meeting of the Association for Computational Linguistics (ACL-16)
Volume 54
Abstract FREEBASE contains entities and relation information but is highly incomplete. Relevant information is ubiquitous in web text, but extraction deems challenging. We present JEDI, an automated system to jointly extract typed named entities and FREEBASE relations using dependency pattern from text. An innovative method for constraint solving on entity types of multiple relations is used to disambiguate pattern. The high precision in the evaluation supports our claim that we can detect entities and relations together, alleviating the need to train a custom classifier for an entity type.
Link to original publication Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe