
Algorithm Domain

TPC-H Queries Relational

K-Means Clustering

Naïve Bayes Classification

Belief Propagation Statistical inference

Triangle Count Graph Analysis

A. Alexandrov, A. Salzmann, G. Krastev, A. Katsifodimos, V. Markl
firstname.lastname@tu-berlin.de

Emma in Action: Declarative Dataflows
for Scalable Data Analysis

Context

Comprehension Syntax

Emma in Action

Declarative Dataflows Beyond SQL

SQL is declarative, but is designed for querying
data. Advanced dataflows characterized by heavy
use of library methods, control flow, and nesting
stretch its limits.

Embedded dataflow DSLs overcome these
problems, but are too low-level. Runtime aspects
like caching, partitioning, and aggregation need
to be hard-coded by the programmer.

The benefits of the two can we combined if we
change the embedding strategy.

Declarative Data Processing

Distributed
Collections

Parallel Dataflow
Engines

Second-Order
Functions

Relations RDBMS SQL

Distributed Bags, Union Representation and Folds Comprehension Semantics

def fold[A,B](e: B, s: A => B, u: (B,B) => B)
 (xs: Bag[A]): B = xs match {
 case emp => e
 case sng(x) => s(x)
 case uni(ys,zs) => u(fold(e,s,u)(ys), fold(e,s,u)(zs))
}

Collection
Processing DSLs

Standalone

Embedded

Shallow Deep

Based on
Types

SQL

RDD
(Spark)

DataSet
(Flink)

Based on
Quotation

Emma
(Flink/Spark)

👍 Declarative
👎 Limited

👎 Low-level
👍 Integrated

👍 Declarative
👍 Integrated

[(x, y) for x in xs, y in ys if x == y]

Python

for (x <- xs; y <- ys; if x == y) yield (x, y)

Scala

SELECT x, y FROM x AS xs, y AS ys WHERE x = y

SQL

⦃ (x, y) | x ∈ xs, y ∈ ys, x = y ⦄

Maths

Comprehensions generalize SQL and are available
as first-class syntax in modern general purpose
programming languages.

Comprehension syntax can be enabled in Scala if we
extend the bag type to a monad using three second-
order functions: map, flatMap, and withFilter.

xs = ⦃1,2,2,3⦄ 3

fold(-INF,id,max2)
max

sng sng sng sng

uni uni

uni

1 2 2 3

id id id id

max2 max2

max2

1 2 2 3

xs.flatMap(x =>
 ys.withFilter(y => x == y).map(y => (x, y)))

Desugared Comprehension

sng sng sng sng

uni uni

uni

sng sng

uni

(1,1) (1,2)

sng sng

uni

(2,1) (2,2)

sng sng

uni

(2,1) (2,2)

sng sng

uni

(3,1) (3,2)

Nested Map Result

sng emp

uni

(1,1)

emp sng

uni

(2,2)

emp sng

uni

(2,2)

emp emp

uni

uni uni

uni

Flattened and Filtered Result
fold(emp,f,uni)

map(f)

ys = ⦃1,2⦄

sng sng

uni

1 2

sng sng

uni

f(1) f(2)

Example: Transitive Closure Basic Principles Demonstration

Reuse linguistic concepts available in Scala such as
while loops, for-comprehensions, and product types.

Develop and test locally. When the code looks good,
wrap it inside an emma.parallelize { … } macro.

Emma will (1) identify maximal bag terms, (2) rewrite
them holistically, and (3) transparently offload them on
a parallel dataflow engine at runtime. Learn More

Implicit Parallelism through Deep Language
Embedding. SIGMOD Record 45(1): 51-58 (2016)

http://www.emma-language.org

Implicit Parallelism through Deep Language
Embedding. SIGMOD Conference 2015: 47-61

val algorithm = emma.parallelize {
 var edges = read(input, …).distinct()

 var sizeO = 0L // old size
 var sizeN = edges.size // new size

 while (sizeN - sizeO > 0) {
 val closure = for {
 e1 <- edges
 e2 <- edges
 if e1.dst == e2.src
 } yield Edge(e1.src, e2.dst)
 edges = (edges plus closure).distinct()
 sizeO = sizeN
 sizeN = edges.size
 }

 write(output, …)(edges)
}

algorithm.run(rt.engine("spark")) // or "flink"

Relational Databases

Parallel Dataflows

⦃f(1),f(2)⦄

Research

Highlights

Award

2015

