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Emma in Action: Declarative Dataflows 
for Scalable Data Analysis 

Context 

Comprehension Syntax 

Emma in Action 

Declarative Dataflows Beyond SQL 

SQL is declarative, but is designed for querying 
data. Advanced dataflows characterized by heavy 
use of library methods, control flow, and nesting 
stretch its limits. 

Embedded dataflow DSLs overcome these 
problems, but are too low-level. Runtime aspects 
like caching, partitioning, and aggregation need 
to be hard-coded by the programmer. 

The benefits of the two can we combined if we 
change the embedding strategy. 
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Distributed Bags, Union Representation and Folds Comprehension Semantics 

def fold[A,B](e: B, s: A => B, u: (B,B) => B) 
             (xs: Bag[A]): B = xs match { 
  case emp        => e 
  case sng(x)     => s(x) 
  case uni(ys,zs) => u(fold(e,s,u)(ys), fold(e,s,u)(zs)) 
} 
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[ (x, y) for x in xs, y in ys if x == y ] 

Python 

for (x <- xs; y <- ys; if x == y) yield (x, y) 

Scala 

SELECT x, y FROM x AS xs, y AS ys WHERE x = y 

SQL 

⦃ (x, y) | x ∈ xs, y ∈ ys, x = y ⦄ 

Maths 

Comprehensions generalize SQL and are available 
as first-class syntax in modern general purpose 
programming languages. 

Comprehension syntax can be enabled in Scala if we 
extend the bag type to a monad using three second-
order functions: map, flatMap, and withFilter. 
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xs.flatMap(x => 
  ys.withFilter(y => x == y).map(y => (x, y))) 
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Example: Transitive Closure Basic Principles Demonstration 

Reuse linguistic concepts available in Scala such as 
while loops, for-comprehensions, and product types. 

Develop and test locally. When the code looks good, 
wrap it inside an emma.parallelize { … } macro. 

Emma will (1) identify maximal bag terms, (2) rewrite 
them holistically, and (3) transparently offload them on 
a parallel dataflow engine at runtime. Learn More 

Implicit Parallelism through Deep Language 
Embedding. SIGMOD Record 45(1): 51-58 (2016) 

http://www.emma-language.org 

Implicit Parallelism through Deep Language 
Embedding. SIGMOD Conference 2015: 47-61 

val algorithm = emma.parallelize { 
  var edges = read(input, …).distinct() 
 
  var sizeO = 0L         // old size 
  var sizeN = edges.size // new size 
  
  while (sizeN - sizeO > 0) { 
    val closure = for { 
      e1 <- edges 
      e2 <- edges 
      if e1.dst == e2.src 
    } yield Edge(e1.src, e2.dst) 
    edges = (edges plus closure).distinct() 
    sizeO = sizeN 
    sizeN = edges.size 
  } 
  
  write(output, …)(edges) 
} 
 
algorithm.run(rt.engine("spark")) // or "flink" 
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